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ABSTRACT

In planning as well as in other areas, temporal logic has been used
to specify so-called temporally extended goals. Temporally ex-
tended goals refer to desirable sequences of states instead of a set of
desirable final states as the traditional notion of achievement goal
does, and provide for more variety in the types of goals allowed.
In this paper, we show how temporally extended goals can be inte-
grated into the agent programming language GOAL. The result is
that GOAL agents may now have both beliefs about the future as
well as have temporally extended goals. We propose a new deci-
sion making mechanism that takes temporally extended goals into
account, and investigate properties of this framework.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents, languages and structures; I.2.5 [Artificial Intel-

ligence]: Programming Languages and Software

General Terms

Theory, Languages

Keywords
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1. INTRODUCTION
The core component of a rational agent is its capability to make

rational choices of action, in order to satisfy its design objectives.
In agent programming languages for rational agents, such choices
are derived from the agent’s beliefs and goals. That is, the agent
should act towards realization of its goals, taking into account its
beliefs when making choices of action.

There has been much work in recent years on how goals can be
used in agent programming frameworks (see, e.g., [13, 26, 5, 8, 10,
21, 24, 15, 16]). Techniques for reasoning with goals to decide on
action have become increasingly sophisticated. Moreover, while in
most earlier approaches the focus was on achievement goals (goals
to reach a certain state of affairs), there is a growing attention also
for other goal types such as maintenance goals (goals to maintain a
certain state of affairs).

Cite as: Agent Programming with Temporally Extended Goals, Koen
Hindriks, Wiebe van der Hoek and Birna van Riemsdijk, Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–
15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Our long-term aim is the development of an agent programming
language with expressive means for the representation of various
types of goals, and built-in computational reasoning mechanisms
that use these goals for rational decision making. Generally speak-
ing, one can take two approaches to address the former issue: one
can design separate representational tools for each goal type, or one
can use a single language in which several goal types can be repre-
sented. An advantage of the first approach is that it facilitates the
design of specialized reasoning methods tailored towards specific
goal types. An advantage of the second approach is that it provides
for a unifying approach, allowing the representation of multiple
goal types within a single framework. In this paper, we take the
latter approach.

As in [16], we use linear temporal logic for the representation of
goals. This is inspired by the use of temporally extended goals in
planning, in which the use of linear temporal logic has been shown
to be very useful for specifying planning problems as well as for
specifying heuristic information for efficiently finding better qual-
ity plans (see, e.g., [1, 2, 4, 23]). An important advantage of the
use of temporal logic is that it facilitates establishing a connection
between the agent programming language and agent logics, as done
in [14], which in turn paves the way for verification of agent pro-
grams. Moreover, it provides for additional reasoning power.

The general idea of the representation of goals using temporal
logic is that an agent should choose its actions such that it produces
computation traces satisfying the goals. An agent can do this by
looking ahead and envisioning which execution paths it could take,
and then choosing an action on a path on which its goals are satis-
fied.

However, agents have limited time and resources for reasoning,
i.e., agents are boundedly rational [22]. This means they cannot
look infinitely far ahead and then choose the best action, i.e., they
need a finite bound or lookahead horizon, restricting the reason-
ing. The solution that was proposed in [15, 16] is that the agent
programmer specifies a fixed, finite lookahead horizon, consisting
of the number of steps that an agent can look ahead. However,
choosing such a number is relatively arbitrary and error prone.

The main contribution of this paper is that we show how tem-
poral logic can be used for a qualitative and more intuitive speci-
fication of horizons, and we propose a computational mechanism
for reasoning with temporally extended goals in an agent program-
ming framework, based on the use of these horizons (Section 5).
This mechanism needs an agent to have beliefs about the future,
and consequently an important part of the effort is concerned with
the incorporation of temporal beliefs in the programming frame-
work, and establishing the relation between beliefs and goals in
this temporal setting (Sections 3 and 4). We also investigate (log-
ical) properties of our framework. In Section 2, we provide some
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further motivation and background, and we discuss related research
and conclude the paper in Section 6.

2. BOUNDED GOALS AND TEMPORAL BE-

LIEFS
In this section, we sketch the main issues addressed in this paper

using a simple example. Two important goal types are achievement
goals and maintenance goals. For example, an employed agent
may have the achievement goal to be at work, and since he some-
times takes the car to work, he has the maintenance goal of keeping
enough fuel in the tank. Using linear temporal logic, achievement
goals can be represented using the � (“eventually”) operator, e.g.,
�atWork , and maintenance goals can be represented using the �

(“always”) operator, e.g., �fuel (cf. [3] for a discussion of various
ways of representing maintenance goals in temporal logic).

Both of these goals have an “unbounded” aspect, i.e., the goal
�atWork specifies that the agent wants to be at work at some
point in the future, and the goal �fuel specifies that the agent al-
ways wants to have enough fuel in the tank. In order to determine
whether particular choices of action will realize these goals, the
agent may have to look infinitely far ahead. That is, if a particular
finite sequence of actions does not realize the achievement goal, it
may always be the case that the next action does, and similarly, if
this sequence of actions maintains the maintenance goal, it may al-
ways be the case that the next action violates the maintenance goal.

We can thus see that these unbounded goals pose problems for
boundedly rational agents, since they cannot always determine
whether choosing a certain action will lead to realization of the
goals. In this paper, we therefore suggest to focus on goals that
do have a bound, and we maintain that many unbounded goals in
fact can be endowed with a natural bound to aid the agent in its
reasoning.

Take, for example, the achievement goal to be at work. Here, it
is probably the case that the agent should be at work before, e.g.,
9 o’clock, i.e., the achievement goal has a deadline providing for a
bound on the goal. This deadline goal can be represented in tem-
poral logic as atWork before 9:00. A natural bound for the
maintenance goal of keeping enough fuel in the tank may be “until
the agent arrives at a gas station”. This bounded maintenance goal
can be represented in temporal logic as fuel until atGasStation .
Using the expressive power of temporal logic, it is thus possible to
specify qualitative bounds or horizons.

The mechanism we propose for using temporally extended goals
in the agent’s decision making is an adaptation of the lookahead
mechanism of [15, 16]. Instead of looking ahead a fixed num-
ber of steps the idea is that the programmer may specify qual-
itative bounds that define the lookahead horizon using bounded
goals. When looking ahead until this horizon, the agent can use
its goals to avoid selecting those actions that prevent the realization
of (some of) these goals. For example, if the agent has deadline
goal atWork before 9:00, the agent looks ahead until 9 o’clock,
and should try choosing its actions such that it achieves the goal of
being at work before the deadline. It should, e.g., not fall asleep
again after the alarm rings, since this would lead to a violation of
the deadline goal. The mechanism is similar for bounded mainte-
nance goals, in which case the agent should look ahead and main-
tain a state of affairs until the bound of the goal.

For an operationalization of bounded goals in a way as described
above, it is important that the bounds of these goals do occur even-
tually, since the agent would otherwise keep looking ahead without
ever encountering the bound. Put differently, the agent should be
able to determine that a bound of a bounded goal occurs eventu-

ally, of course, without actually doing the lookahead. We propose
to allow the agent to have beliefs about the future, i.e., temporal
beliefs, such that the agent can determine whether a bound occurs
eventually by temporal reasoning over his beliefs.

3. REPRESENTATION OF BELIEFS AND

GOALS
We use the agent programming language GOAL [9] as a basis for

our framework. We maintain that investigating the consequences
of certain choices in a specific framework also sheds light on the
general principles. GOAL is a language for programming rational
agents. GOAL agents maintain a mental state of declarative beliefs
and goals and derive their choice of action from their beliefs and
goals. A GOAL agent program defines the initial beliefs and goals
of an agent, specifies the preconditions and effects of the actions
available to the agent, and contains a set of action rules to select
actions for execution at runtime. Action rules define a strategy or
policy of the agent for acting. The beliefs and goals of an agent
are dynamic and change over time. The action specifications and
action rules are static.

GOAL does not commit to any particular knowledge represen-
tation language but assumes such a language with associated in-
ference relation and update operators is given. In the current im-
plementation of GOAL Prolog has been used with a STRIPS-like
[12] specification of actions. This follows current practice in agent
programming where so far essentially propositional languages like
Prolog are used to specify an agent’s beliefs and/or goals.

However, as discussed above, such languages do not provide the
expressive power to express temporally extended goals, nor tempo-
ral beliefs. Such temporal goals and beliefs have been usefully ap-
plied in planning and other areas, and in this section we show how
beliefs and goals can be represented using linear temporal logic
(LTL) in the agent programming framework GOAL. A base lan-
guage L0 of classical propositional formulae over a set of atoms
At, with typical element φ, is assumed that includes �,⊥ ∈ L0

denoting respectively the true and false sentence.

Definition 1. (Linear Temporal Logic)
The language of linear temporal logic LLTL, with typical element
χ, is defined by:

φ ::= any element from L0

χ ::= φ | ¬χ | χ ∧ χ | ©χ | χ until χ

The semantics of LTL formulas is as usual defined on traces,
which are infinite sequences of valuations. Given a set of propo-
sitional atoms At, state is a valuation, if for every p ∈ At, exactly
one of the literals p and ¬p is in state. For example, if t is a trace
then ©χ is satisfied on t in state i, expressed as t, i |=LTL ©χ, if
t, i+ 1 |=LTL χ. See, e.g., [11] for further details.

The eventuality operator �ϕ is introduced as an abbreviation for
� until ϕ and its dual �ϕ is defined as ¬�¬ϕ. We argue that
goals with deadlines may be effectively used in an agent’s decision-
making in Section 5. To be able to easily express in particular dead-
line goals, we also introduce the ϕ before ψ operator. This oper-
ator does not introduce additional expressivity and can be defined
in terms of until by ¬(¬ϕ until ψ).

3.1 Mental States
Rational agents need to maintain a rational balance among their

beliefs and goals [7]. That is, the beliefs and goals of a rational
agent need to be reasonable and ideally are justified in some way.
Allowing temporal formulae as beliefs and goals raises particular
issues related to maintaining such a balance. In particular, arguing
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that imposing particular constraints on the relation between beliefs
and goals is reasonable, is much harder in a temporal setting. It
has been the subject of much debate. Two of the most influential
papers in which this relation is defined are [7, 19], in which tempo-
ral logics are proposed that incorporate modal operators for beliefs
and goals, and for other mental attitudes.

In this paper, we follow the approach proposed in [7] when it
comes to defining rationality constraints on beliefs and goals and
their relation. That is, we provide primitives for the representation
of an agent’s beliefs and goals, imposing only a few basic con-
straints at this level on the relation between beliefs and goals. Us-
ing these primitives, other variants of these mental attitudes can be
defined that can be used for rational action selection.

As usual in GOAL, we use a belief base, typically denoted by Σ,
and goal base, typically denoted by Γ, as representational structures
for beliefs and goals. Both Σ and Γ consist of LTL formulas in this
paper. Following [7] (and other approaches, for that matter [19,
14]), we require the belief base and goal base each to be consistent.
Again following [7], we maintain that a rational agent should not
want to change the inevitable. This is called realism in [7]. In-
formally, things that the agent believes will happen inevitably are
represented by an agent’s beliefs about the future, whereas a goal
expresses something that an agent wants to achieve at some mo-
ment in time in the future. That is, the goals of an agent should
determine a condition that is more specific than what is believed
to be inevitable; since the more specific entails the less specific, an
agent’s goals should entail its beliefs. Goals are thus more specific
than beliefs, in the sense that they add desired properties that can
be influenced or controlled by the agent to the inevitable beliefs.

The belief base and goal base of a GOAL agent together make up
its mental state. The following definition formally defines mental
states and the accompanying rationality constraints.

Definition 2. (Mental States)
A mental state of a GOAL agent, typically denoted by m, is a pair
〈Σ,Γ〉 with Σ ⊆ LLTL the belief base, and Γ ⊆ LLTL the goal
base. Additionally, mental states need to satisfy the following ra-
tionality constraints:

(i) The belief base is consistent: Σ 
|=LTL ⊥,
(ii) The goal base is consistent: Γ 
|=LTL ⊥,

(iii) Goals refine (inevitable) beliefs: Γ |=LTL Σ.
Note that it follows from this definition that the belief base and
goal base are also mutually consistent, i.e., Σ ∪ Γ 
|= ⊥, which
means that the agent cannot have something as a goal that is never
realizable according to its beliefs. Also, note that the constraint
Γ |=LTL Σ allows to derive the goal �p from a disjunctive goal
�p ∨�q and the belief that �¬q, establishing interaction between
disjunctive goals and beliefs.

3.2 Mental State Conditions
A GOAL agent needs the means to inspect its beliefs and goals in

order to derive its choice of action from these. To do so, so-called
mental state conditions are introduced to reason about the agent’s
beliefs and goals. The language Lm of mental state conditions ex-
tends LLTL with a belief B and (primitive) goal G operator, which
can be used to express conditions on the mental state of an agent.
That is, the set of mental state conditions consists of Boolean com-
binations of formulae of the form Bχ and Gχ with χ ∈ LLTL.

Definition 3. (Mental State Conditions: Syntax)
The language Lm, with typical element ψ, of mental state condi-
tions is defined by:

χ ::= any element in LLTL

ψ ::= Bχ | Gχ | ¬ψ | ψ ∧ ψ

Note that it is not allowed to nest the operators B and G, nor to use
temporal operators outside the scope of these operators. The se-
mantics of mental state conditions is defined with respect to mental
states.

Definition 4. (Mental State Conditions: Semantics)
Let 〈Σ,Γ〉 be a mental state. The semantics of mental state condi-
tions is defined by:

〈Σ,Γ〉 |=m Bχ iff Σ |=LTL χ,
〈Σ,Γ〉 |=m Gχ iff Γ |=LTL χ,
〈Σ,Γ〉 |=m ¬ψ iff 〈Σ,Γ〉 
|=m ψ,
〈Σ,Γ〉 |=m ψ ∧ ψ′ iff 〈Σ,Γ〉 |=m ψ and 〈Σ,Γ〉 |=m ψ′.

Using the belief and primitive goal modalities B and G it is pos-
sible to define several related notions of goals. First, we define an
operator Goalχ by Gχ ∧ ¬Bχ, i.e., Goalχ holds if χ follows
from the agent’s goal base, and is not believed to occur inevitably.
The operator Goalχ corresponds more closely to the intuitive no-
tion of a goal as being something that the agent should put effort
into bringing about.

Using this operator, we can make several additional classifica-
tions of types of goals that an agent may be said to have. For ex-
ample, χ is said to be an achievement goal whenever Goal�χ,
and we write Gachχ. Note that if an agent has an achievement goal
Gachχ and believes that χ always implies χ′, i.e. B�(χ → χ′),
although we have G�χ′, it does not follow that Gachχ

′ since the
agent may for instance believe that χ′. Achievement goals are par-
ticular instances of deadline goals of the form Goal(χ1 before χ2)
with χ2 = ⊥. An agent is said to have a bounded maintenance goal
when Goal(χ1 until χ2) holds. Finally, it should be noted that
the goal operator G used in the presentation of GOAL in [9] is dif-
ferent from the goal operator G introduced here; the operator G in
[9] is best read as an achievement goal operator, an interpretation
formally justified in [14].

Proposition 1. The following formulae are valid on mental states:

1. ¬B⊥ ∧ ¬G⊥
2. B(χ1 → χ2) → (Bχ1 → Bχ2)
3. Bχ→ Gχ
4. (B(χ1 before χ2) ∧ B�χ2) → B�χ1

5. (G(χ1 before χ2) ∧ B�χ2) → G�χ1

6. Goalχ↔ (Gχ ∧ ¬Bχ ∧ ¬B¬χ)

Item 1 expresses that both beliefs and goals are consistent; item 2
says that B is a ‘normal modal operator’, 3 implies realism. Item
5 (4 is similar) expresses the following rationality of goals: if the
agent has a goal that χ1 will happen before χ2, and he indeed be-
lieves that χ2 will sometime occur, then he has as a goal that χ1

will sometime occur. Item 6 explains why Goal can be considered
to model goals that the agent is willing to act upon: any χ for which
Goalχ holds is in the agent’s goal base, and not to believed to be
guaranteed or impossible. Proofs are omitted for reasons of space.

Some other desirable properties follow rather straightforwardly
from those above, e.g., we have that if an agent has a goal, it does
not believe that the opposite is inevitable, i.e., Gχ → ¬B¬χ, or,
equivalently, B¬χ→ ¬Gχ.

4. DYNAMICS OF BELIEFS AND GOALS
In the previous section, we showed how beliefs and goals can

be represented using LTL. In this section, we discuss how beliefs
and goals change during execution of the agent. In Section 4.1, we
show how to represent preconditions and effects of actions in LTL
and in Section 4.2 we specify how beliefs and goals change as the
result of the execution of actions.
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4.1 Action Theories
Both in planning and in agent programming, actions are typically

specified by defining their preconditions and effects. A well-known
problem in artificial intelligence is the frame problem, which is the
problem of how to specify what is not changed by the execution of
actions. This problem arises in particular in the context of logical
specifications of actions.

In this paper, we base the specification of actions on [17], in
which an encoding of Reiter’s solution to the frame problem [20]
in LTL is proposed for use in planning. For this, we extend the set
of atoms At over which LLTL is defined (see Definition 1) with a
set of actions Act such that Act ∩ At = ∅ [17]. If a ∈ Act, the
intended meaning of a holding at a state of a computation trace is
that the action a is performed in this state. In order to make a clear
distinction between actions and other propositional atoms, we write
do(a) rather than a, when referring to actions in LTL formulas. We
call the resulting language LAct

LTL.
Action preconditions are specified in LAct

LTL by means of formu-
lae of the form

�(do(a) → prea)

where prea ∈ L0 expresses the precondition for doing a. Intu-
itively, these formulae express that at any time, action a may be
performed only if its preconditions prea hold. For example, the
precondition of the action of driving to work may be that a car is
available, specified as �(do(driveToWork) → car).

Moreover, action effects are represented by temporal logic en-
codings of Reiter’s successor state axioms [20]. The basic idea of
Reiter’s solution to the frame problem is that a propositional atom
p ∈ At may change its truth value only if an action is performed
that affects this truth value. Two cases are distinguished: (i) ac-
tions that have p as effect and (ii) actions that have ¬p as effect.
For each proposition p ∈ At the first set of actions a1, . . . , am is
collected and a disjunction is formed of the form do(a1) ∨ . . . ∨
do(am) denoted by A+

p and, similarly, the second set of actions
am+1, . . . , an is collected and a disjunction is formed of the form
do(am+1) ∨ . . . ∨ do(an) denoted by A−

p .
Then, for each proposition p a successor state axiom of the form

�(©p↔ (A+
p ∨ (p ∧ ¬A−

p )))

is introduced. Intuitively, such formulae express that at any time,
in the next state p holds iff an action is performed that has p as
effect (i.e. A+

p holds) or p is true in the current state and no action
that has ¬p as effect is performed (i.e. ¬A−

p holds). For example,
one may specify that the agent is at work, either if it just drove or
cycled to work, or if it was already at work and did not go home,
i.e., �(©atWork ↔ (A+

atWork ∨ (atWork ∧ ¬A−
atWork))), where

A+
atWork = do(driveToWork) ∨ do(cycleToWork) and A−

atWork =
do(driveHome) ∨ do(cycleHome).

A difference between agents and planners is that the former per-
form actions indefinitely and potentially produce infinite action se-
quences whereas a planner is assumed to only produce a finite se-
quence of actions. This difference between agents and planners is
captured by the formula

�(do(a1) ∨ . . . ∨ do(an))

where a1, . . . , an are actions which together exhaust all the actions
in Act. We call this the always acting axiom. Naturally, this re-
quires that at least one action can be executed at any time. This can
be achieved, e.g., by including an action that can always be exe-
cuted, such as a wait action that can always be executed and that
has no effect, other than the passing of time.

An action theory A ⊆ LAct
LTL now consists of action precondi-

tions for all actions a ∈ Act, successor state axioms for all propo-
sitions p ∈ At, which indirectly specify the effects of actions, and
the axiom of always acting.

Using LTL for the specification of actions in our setting has
two main advantages. First, it contributes to the uniformity of our
framework, which uses LTL as the basis for representing mental
attitudes. Second, it provides a solution to the issue of where tem-
poral beliefs come from. That is, the idea is that we refine the pro-
posal of Section 3 by not allowing arbitrary LTL formulas in the
belief base. Rather, the belief base consists of those formulas used
for specifying the action theory, and a representation of what is
currently the case, i.e., a representation of the current state.

This is defined formally as follows. A belief base Σ, containing
LTL formulas defined over a set of atoms and actions At ∪ Act
is a set of the form state ∪ A, where state is a valuation1 over At
describing the current state and A ⊆ LAct

LTL is an action theory. The
restriction of the current state to literals is usual in planning. In the
sequel, we will assume belief bases to be of this form.

An action theory may allow that multiple actions are executed
simultaneously. Obviously, this is only allowed when the precondi-
tions of these actions hold and the effects of the actions are consis-
tent. We use Do(A) as a shorthand for

V
a∈A do(a), and NotDo(B)

as a shorthand for
V

b∈B ¬do(b). Let B = Act \ A and assume
that belief base Σ has the form state ∪A with A ⊆ LAct

LTL. We say
that a set of actions A ⊆ Act can be executed consistently in Σ if
A ∪ {Do(A)} ∪ {NotDo(B)} 
|=LTL ⊥ and ∀a ∈ A : Σ |=LTL

prea; we say A is maximal if there is no set A′ ⊃ A that can be
consistently executed.

Logical Properties.
Since action theories are part of an agent’s beliefs, the following

validities are immediate.

Proposition 2. We have the following, where �(p) is a variable
over {p,¬p} with p ∈ At, and φ, φ1, φ2 ∈ L0 (the base proposi-
tional language, see Section 3).

1. Bdo(a) → Bprea
2. B © p↔ B(A+

p ∨ (p ∧ ¬A−
p ))

3. ¬B�(p) ↔ B¬�(p)
4. B(φ1 ∨ φ2) ↔ (Bφ1 ∨ Bφ2)
5. B¬φ↔ ¬Bφ
6. (B�χ ∧ B(do(a) → ©¬χ)) → B¬do(a)

Item 3 of Proposition 2 is an instance of the Closed World Assump-
tion for literals. It entails Items 4 and 5. Also, note that the closed
world assumption does not imply that an agent believes each tem-
poral formula or its negation; for example, we can have ¬B�p
without also having B¬�p.

Moreover, it is important to note that what can be derived as a
belief from an action theory and a current state may be relatively
weak. For example, the agent will only be able to derive Bdo(a),
if a is the only executable action, i.e., the only action for which the
precondition is believed to hold in the current state. If, e.g., the
action b is also executable, it will only be able to derive the weaker
B(do(a)∨do(b)). This reflects the fact that an action theory only
specifies what could in principle be executed, and what would be
the effects of that. If multiple actions are executable, the agent still
has to make a choice and select the actions that will be executed.

A similar discussion applies to the derivation of (temporal) be-
liefs about propositions. For example, assume that Act = {a, b, c},

1See Section 3.
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A+
p = do(a) ∨ do(b) ∨ do(c), and that a and b are the only exe-

cutable actions in the current state, according to the belief base, i.e.,
B(do(a) ∨ do(b)) holds. Further, assume that B¬p. The agent
can then derive B© p, since both a and b have p as an effect. This
is reflected in Item 2 of Proposition 2, i.e., the agent would be able
to derive BA+

p from B(do(a) ∨ do(b)), and from this be able to
derive B © p. However, if b would not have p as an effect, i.e.,
A+

p = do(a)∨do(c), the agent would not be able to derive BA+
p

and consequently neither B © p.
Intuitively, the action theory implicitly specifies all possible fu-

tures, i.e., all possible sequences of action execution and their ef-
fects that are in principle possible, given the action specifications.
An agent will only be able to derive Bϕ if ϕ is the case in all pos-
sible futures, i.e., no matter which actions the agent will choose, ϕ
will be the case. In particular, B�φ will only be derivable if φ will
eventually be the case according the beliefs, no matter what actions
the agent chooses for execution.2 These kinds of beliefs will be
used for reasoning with bounded goals in Section 5.

4.2 Progression of Belief and Goal Bases
An agent’s belief base specifies when actions can be executed

and what their effects are, and it specifies the current state. In a pro-
gramming framework for rational agents, we also need to provide
a computational mechanism that specifies how an agent’s beliefs
and goals change, if the agent selects actions for execution, i.e., we
have to specify how the belief base and goal base are progressed
when actions are executed.

Progression of Beliefs.
When a set of actions A is executed, only the part of the belief

base describing the current state is updated. That is, the action
theory remains unchanged. The new current state consists of all
literals p and ¬q for which ©p or ©¬q can be derived from the
belief base, if it is assumed that A will be executed.

Definition 5. (Progression of Belief Base) Given a belief base Σ
consisting of a current state state and action theory A ⊆ LAct

LTL, we
define the effects of the execution of a set of actions A ⊆ Act as
follows. Let B = Act \A. Then

state′ = { p | Σ ∪ {Do(A)} ∪ {NotDo(B)} |=LTL ©p} ∪
{ ¬q | Σ ∪ {Do(A)} ∪ {NotDo(B)} |=LTL ©¬q}

and ProgrB(Σ, A) = state′ ∪ A.

The following theorem justifies this definition of progression.

THEOREM 1. Let A ⊆ Act be a set of actions that can be con-
sistently executed in Σ, and let B = Act \A and φ ∈ L0. Then we
have:

〈Σ,Γ〉 |=m B((Do(A) ∧ NotDo(B)) → ©φ) iff

ProgrB(Σ, A) |=LTL φ

The following corollary specifies that progression of the belief
base does not violate the first rationality constraint of Definition 2,
i.e., consistency of the belief base.

COROLLARY 1. Let A ⊆ Act be a set of actions that can be
consistently executed in Σ. Then ProgrB(Σ, A) 
|=LTL ⊥.

2Note that the kind of reasoning as described above can be done
repeatedly, to derive beliefs such as B�φ.

Progression of Goals.
Before we explain how goals are progressed, we refine the pro-

posal of Section 3 for the definition of the goal base. Without loss
of generality, we require that for mental states 〈Σ,Γ〉 it holds that
Σ ⊆ Γ. The satisfaction of the third rationality constraint of Defi-
nition 2, i.e., Γ |=LTL Σ, is then trivially satisfied. The idea is that
goals χ ∈ Γ \ Σ can be used to refine the inevitable beliefs.

There are two main purposes of progression of the goal base: (i)
it should incorporate a mechanism for making sure that the agent
does not put effort into trying to reach goals that are already be-
lieved to be reached, and (ii) it should ensure consistency of the
goal base, and inclusion of the belief base in the goal base.

Regarding (i), the idea is that if, e.g., �φ ∈ Γ, and at some point
Σ |=LTL φ, the agent believes that this goal is reached.3 It should
then no longer put effort into trying to reach φ. In [16], we have
proposed a progression mechanism that syntactically transforms in-
dividual LTL formulas in the goal base after each execution step, to
take care of this.

The mechanism is a slight adaptation from [1, 2]. For exam-
ple, Progr indvG(�χ,Σ) is defined as Progr indvG(χ,Σ) ∨ χ, and
Progr indvG(φ,Σ) for φ ∈ L0 is defined as � if Σ |= φ, and ⊥ oth-
erwise. Therefore, if Σ |=LTL φ, Progr indvG(�φ,Σ) = � ∨ �φ,
which, using boolean simplifications, can be reduced to �. The op-
erator Progr indvG is defined similarly for the other connectives. We
refer to [16] for further details, and omit them here for reasons of
space. Progression of formulas in the goal base as described above
only needs to be applied to goals χ ∈ Γ \ Σ. Progression of Σ has
already been specified in Definition 5.

Regarding (ii), i.e., consistency of the goal base, this is an issue
that is not solved by Progr indvG. For example, Progr indvG(φ,Σ) is
⊥ if φ does not follow from Σ, yielding an inconsistent goal. While
this may be easily detected through a syntactic analysis, two goals
�p,©q ∨ �¬p ∈ Γ \ Σ may progress to �p and �¬p whenever
Σ 
|=LTL p and Σ 
|= q, which means that Γ would become in-
consistent. This is not detected by Progr indvG, since this operator
simply performs a syntactic transformation.

While this could be resolved by constraining the kinds of for-
mulae in the goal base and performing boolean simplifications, this
will not prevent that Γ \ Σ becomes inconsistent with Σ. It could
be the case that the agent believes a goal to be reachable, but, af-
ter choosing a particular action, no longer believes this goal to be
reachable. To resolve this issue, we assume a selection function sel
that, given a goal base Γ and belief base Σ chooses a maximal set
of goals4 λ generated by applying Progr indvG(·,Σ) to Γ, such that
Σ ∪ λ is still consistent.

Definition 6. (Progression of Goal Base)
The progression of a goal base Γ with respect to a belief base Σ
where Σ ⊆ Γ is defined as follows. Let
γ = ∪χ∈Γ\ΣProgr indvG(χ,Σ). Also, let the set of candidates for
new goals be Λ =

{λ | λ ⊆ γ & λ ∪ Σ 
|= ⊥ & ∀γ′(λ ⊂ γ′ ⊆ γ ⇒ Σ ∪ γ′ |= ⊥)}

that is, Λ is the set of new goals λ such that it is a maximal subset
of γ where λ ∪ Σ is still consistent. Finally, let sel be a selection
function on such candidate sets. Then we define ProgrG(Γ,Σ) =
sel(Λ) ∪ Σ.

3Note that there is a difference between believing that the goal �φ
has been reached, which could be said to be the case if at some
point Bφ holds, and believing that the goal will be reached, which
is the case if B�φ holds.
4Other kinds of selection functions can be considered as well.
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Definition 7. (Mental State Transformer M)
The mental state transformer function M is a mapping from a men-
tal statem = 〈Σ,Γ〉 (with Σ ⊆ Γ), and a set of actionsA ⊆ Act to
a new mental state. Let Σ′ = ProgrB(Σ, A). Then M(m,A) =j

〈Σ′,ProgrG(Γ,Σ′)〉 if A can be consistently executed in Σ
undefined otherwise

Proposition 3. LetA be a set of actions andm be a mental state,
i.e., a state that satisfies the rationality constraints of Definition 2.
Then M(m,A) also satisfies the rationality constraints of Defini-
tion 2 whenever it is defined.

5. DECISION MAKING WITH

TEMPORALLY EXTENDED GOALS
From the actions that are executable in a mental state, a GOAL

agent has to make a choice as to which actions it will actually exe-
cute. The basic mechanism available in GOAL that allows an agent
to make this choice, is a rule-based action selection mechanism.
This mechanism will be described in Section 5.1. In Section 5.2,
we define a mechanism on top of the rule-based mechanism, which
is based on looking ahead.

5.1 Rule-based Action Selection
Action rules have the form if ψ then do(a) and are used to

specify that action a may be selected by the agent for execution
if mental state condition ψ holds; if that is the case we say that
action a is applicable. If the preconditions of an applicable action
also hold, we say that the action is enabled. We introduce a special
predicate enabled(a) and write m |= enabled(a) when a is
enabled. Formally, if if ψ1 then do(a), . . . , if ψn then do(a)
are all the action rules for action a, then m |= enabled(a) is
defined as m |= (ψ1 ∨ . . . ∨ ψn) ∧ Bprea. We assume that the
action rules are defined such that in any mental state, at least one
action is enabled.

Action rules allow agents to derive their choice of action from
their beliefs and goals in the current mental state. Using these rules,
the agent selects a subset of actions from all actions that might be
executed in the state. For example, the rule if B(home∧raining)∧
G(atWork) then do(driveToWork) can be used to specify that if
the agent is home and it is raining, and if he has the goal to be at
work, he can select the action of driving to work.

The semantics of action selection and execution are formally
specified in GOAL by means of an operational semantics [18]. In
each state a GOAL agent non-deterministically selects a maximal
subset of the enabled actions that can be executed consistently. This
is formally defined in the following transition rule, which describes
how an agent moves from one mental state to another.

Definition 8. (Action Rule Semantics)
Let m = 〈Σ,Γ〉 be a mental state. The labelled transition relation
−→ is the smallest relation induced by the following transition rule.

A ⊆ Act is a maximal set that can be executed consistently in Σ

E = {a ∈ Act | m |= enabled(a)}

m
A∩E−→ M(m,A ∩ E)

The set A ∩ E in the transition rule is a maximal set of actions
that are enabled, i.e. selected by action rules, and that can be con-
sistently executed. Note that there does not need to be a unique
maximal set A ∩ E and in that case one of these sets is non-
deterministically chosen.

The execution of a GOAL agent results in a computation trace.
We define a trace as a sequence of mental states, such that each

mental state can be obtained from the previous by applying the tran-
sition rule of Definition 8. As GOAL agents are non-deterministic,
the semantics of a GOAL agent is defined as the set of possible
computations of the GOAL agent, where all computations start in
the initial mental state of the agent.

Definition 9. (Meaning of a GOAL Agent)
A trace t is an infinite sequence m0, A0,m1, A1, . . . of mental

statesmi and action setsAi such thatmi
A−→ mi+1. The meaning

RAgt of a GOAL agent named Agt with initial mental state m0 is
the set of all traces starting in that state.

Properties.
The purpose of the rule-based action selection mechanism is to

allow the agent programmer to provide the agent with a means to
choose actions for execution from an available set of executable
actions. That is, rather than leaving it completely up to the agent
to choose which actions to execute, the rules can be used to reduce
the options an agent has, i.e., the rules specify when it may make
sense to execute an action.

Informally, the traces that can be generated when an agent Agt
executes, i.e., the traces in RAgt, should thus be a subset of the
traces implicitly specified by the action theory of the agent: the
action theory implicitly describes all traces that are in principle
possible according to the action theory, and the rule-based action
selection mechanism allows an agent to choose between these op-
tions.

In order to make this precise, we need to transform the traces of
GOAL agents, since, for the comparison, we only take into account
those parts of GOAL traces that refer to what actually happens, i.e.,
the part of the belief base describing the current state, and the ac-
tions that are executed.

Definition 10. (GOAL traces to LTL traces) Let Agt be a GOAL
agent with initial mental state m0 = 〈Σ0,Γ0〉 where Σ0 is of the
form state0 ∪ A and A is an action theory defined over the set
of actions Act, and let t = m0, A0,m1, A1, . . . ∈ RAgt. The
function T takes each pairmi, Ai in t, wheremi = 〈Σi,Γi〉 where
Σi is of the form statei ∪ A and Bi = Act \ Ai, and yields the
set si = statei ∪

S
ai∈Ai

do(ai) ∪
S

bi∈Bi
¬do(bi), returning

s0, s1, . . . as the result. T is lifted to sets of traces in the obvious
way.

The traces resulting from the application of T are LTL traces, where
each state si consists of a part representing the current state, and a
part representing which actions are executed in that state, i.e., the
states are valuations over At∪Act. This allows us to formulate the
following theorem, which specifies that the transformed traces of a
GOAL agent are a subset of the traces that satisfy the action theory.
The proof is by induction on the length of prefixes of traces.

THEOREM 2. Let Agt be a GOAL agent with initial mental
statem0 = 〈Σ0,Γ0〉 and action theory A ⊆ Σ0, and let M(A) =
{t | t, 0 |=LTL A}5. We then have T (RAgt) ⊆ M(A).

This means that the beliefs of an agent, which are derived from
the current state and the action theory, are “justified” in the sense
that they correspond to the actual traces as generated through the
rule-based action selection mechanism. That is, if the agent has a
particular belief in some mental state, it is the case that no matter
what actions the agent chooses for execution, the trace will develop
according to this belief. For example, if the agent believes B�φ in
some state, then it is the case that at some point in the future, it will
believe Bφ.
5See Section 3 for the notation.
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5.2 Action Selection using Lookahead
Action rules as introduced in the previous section allow an agent

to derive actions from what he believes and what he has as goals in
the current mental state, but we argue that this does not yet account
for the full role that such goals can have in the action selection
mechanism of a rational agent.

As explained in Section 2, the additional mechanism we propose
for using temporally extended goals in the agent’s decision making
is a lookahead mechanism, where the idea is to use the bounds of
bounded goals as a lookahead horizon. The agent can use his belief
base for determining whether he believes these bounds will eventu-
ally occur, and, from Theorem 2, we know that then the agent will
eventually believe the bound. For example, an agent may believe
that it will eventually be 9 o’clock, i.e., that B(�9:00) holds. By
Theorem 2, we then have that �B(9:00) holds on all traces of the
agent, i.e., no matter what the agent does, it will eventually believe
that it is 9 o’clock. This means that the agent can safely look ahead
until 9 o’clock, since the deadline will occur eventually.

Although the agent can only use its bounded goals of which the
deadline is believed to occur eventually, to determine a lookahead
horizon, it may still also take its other goals into account when
choosing an action. For example, if the agent has the deadline goal
breakfast before atWork it may be the case that its deadline
atWork will not always occur, e.g., if the agent decides to stay
in bed. This means that this deadline cannot be used for looking
ahead. However, if the agent can either have breakfast before go-
ing to work (while still arriving there before 9 o’clock), or not have
breakfast before going to work, it should choose to have break-
fast first, thereby satisfying both deadline goals. The approach we
propose below to achieve this desired behavior, is to take bounded
goals for which the bounds are believed to occur eventually as a
basis. However, if the agent looks ahead until such a bound, it will
also take its other goals into consideration when choosing an ac-
tion. That is, first the agent uses its bounded goals to determine a
lookahead horizon that is believed to occur eventually, and if mul-
tiple such bounds exist, it takes the one that is furthest away. Then,
it takes all goals into consideration when choosing an action, trying
to minimize violation of goals until the lookahead horizon.

In order to formalize this approach, we need to introduce several
notions. If t is a trace, we use ti to denote the i-th state of t, t〈h〉

to denote the prefix of t of length h, t[i] to denote the suffix of t
from state i, and we use t |=LTL χ to abbreviate t, 0 |=LTL χ. We
use AG(m) = {χ | m |= Goal(χ)} to denote all goals of the
agent in mental state m. Note that we use the operator Goal in
this definition, reflecting the fact that we only use those goals for
decision making that will not be reached inevitably, i.e., excluding
goals such as 8:00 before 9:00. We use BG(m) to denote the
set of bounded goals of a mental state m of which the agent be-
lieves the bound to occur eventually, defined as {ϕ before ψ |
ϕ before ψ ∈ AG(m) & m |= B�ψ} ∪ {ϕ until ψ |
ϕ until ψ ∈ AG(m) & m |= B�ψ}. Given a set of bounded
goals BG , we define the set of horizons of BG as H (BG) = {ψ |
ϕ before ψ ∈ BG or ϕ until ψ ∈ BG}. Given a trace t
and a set of horizons H , we define the maximum horizon on t as
maxH (t,H ) = i, if there is an i is such that there is a ψ ∈ H with
ti |= Bψ and for all ψ′ ∈ H there is j ≤ i with ti |= Bψ′ and
there is no j < i with tj |= Bψ, and maxH (t,H ) = 0, otherwise,
i.e., if H = ∅.

Let Goalχ be a goal. We define that this goal is violated on
a finite prefix of length h of a trace t ∈ RAgt if there does not
exist an infinite continuation t′ of the transformed prefix, such that
T (t)〈h〉t′ |=LTL χ. We use VG(X, t, h), where X is a set of
goals, to denote the set of goals from X that are violated on t〈h〉.

The following function σmin
Agt is used to formally specify the se-

mantics of a GOAL agent Agt that uses lookahead for decision
making with temporally extended goals. Broadly speaking, the
function takes the traces RAgt that are generated by the action
selection rules of agent Agt, and filters out all traces that do not
minimize violation of goals until the maximum lookahead horizon.
We define the function inductively on the set of traces RAgt and
on the time point i on such a trace. An agent will use its goals
to choose an appropriate action from the start, i.e. time 0, which
explains why the base case of the inductive definition starts at −1.
The base case defines the starting point of traces RAgt that need to
be filtered. The idea is that the filter function σmin

Agt (i) returns all
traces t that minimize violation of the goals of the agent on a finite
prefix of length maxH (t,H (BG(ti))), starting from state i.

Definition 11. (Decision-Making Function σ)
Let Agt be an agent. σmin

Agt is a function that chooses an action that
minimizes violation of goals, as far as it can see this coming within
the maximum horizon of a trace, defined as follows:

σmin
Agt (−1) = RAgt,
σmin

Agt (i) = {t ∈ σmin
Agt (i− 1) | ¬∃t′ ∈ σmin

Agt (i− 1) :

VG(AG(t
′i), t,maxH (t,H (BG(t

′i))) ⊂
VG(AG(ti), t,maxH (t,H (BG(ti)))}

The semantics of a GOAL agentAgt that uses lookahead for choos-
ing actions, on top of a rule-based action selection mechanism, is
then defined as follows.

Definition 12. (Meaning of GOAL Agent using Lookahead)
The meaning RLA

Agt of a GOAL agent Agt is defined by:

RLA
Agt =

∞\
i=−1

σmin
Agt (i)

One could define refinements of this semantics, e.g., such that the
agent tries to minimize violation of goals, but also maximize achieve-
ment of goals, or such that it takes into account importance of goals
rather than simply minimizing the number of goals that is violated.
However, for reasons of space we do not include such definitions.

The following proposition states that the lookahead mechanism
of Definition 12 does not change the rule-based semantics if the
agent never has any bounded goals of which he believes the bound
to occur eventually.

Proposition 4. Let Agt be an agent. If for all t ∈ RAgt and i it
holds that BG(ti) = ∅, then RLA

Agt = RAgt.

6. CONCLUSION
The main contribution of this paper is that we have shown how

temporal logic can be used for a qualitative and more intuitive
specification of horizons for bounded goals, and we have proposed
a lookahead mechanism for reasoning with bounded goals in an
agent programming framework, based on the use of these horizons.
We have shown how temporal beliefs can be used to ensure that
the agent can derive whether horizons will eventually occur, mak-
ing sure that he will only look ahead until a horizon if this is the
case. Moreover, since agents need to maintain a rational balance
among their beliefs and goals, we have defined several rationality
constraints, and we have provided progression mechanisms for be-
liefs and goals that maintain the rationality constraints.

The main difference between this work and [16] is that instead of
looking ahead a fixed number of steps as proposed in [16], in this
paper we propose the specification of qualitative bounds that define
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the lookahead horizon using bounded goals. Moreover, in contrast
with [16] we propose the use of temporal beliefs and mechanisms
for maintaining a rational balance between beliefs and goals in this
context.

This work has been inspired by the use of temporally extended
goals in planning. An important difference between agents and
planners is that agents more explicitly differentiate between their
beliefs and their goals, warranting the definition of rationality con-
straints and mechanisms for maintaining these during execution of
the agent. Also, while planners provide a finite plan to realize
a set of initial goals, agents continually take the changing beliefs
and goals into account during execution, when making decisions.
There are thus differences between planning and agent program-
ming, and historically agent programming languages have even
been proposed to circumvent the high computational complexity
of planning. Nevertheless, we believe that the current state of the
art in both agent programming and planning may yield interesting
results when it comes to synergies between planning and agent pro-
gramming (see also [21]). Deadlines have also been considered in
the context of deontic logic [6], in which it is investigated what it
means that an agent is obliged to meet a deadline. To the best of
our knowledge, our work is the first to focus on the use of deadline
goals in agent programming.

As for future research, more work is needed with respect to the
computational properties of the framework and on how to imple-
ment the ideas efficiently, in particular also for the selection func-
tion of Definition 6. We envisage that planning techniques can be
adapted to implement lookahead, but more research is needed to in-
vestigate exactly how to do this. More experimentation is needed to
identify common temporal goal patterns and to develop techniques
for supporting the programmer when using temporally extended
goals, e.g., comparable to [25], in which a declarative service flow
language is proposed that has an appealing graphical notation, but
that is grounded in temporal logic.

We conclude by remarking that this paper extends the work re-
ported in [14]. In [14] it is shown that the GOAL programming
logic of [9] can be embedded in a minor variation of the logic of
[7]. The same embedding result presented in [14] is applicable to
GOAL agents as defined here. In this paper we have provided a
concrete instantiation of the abstract agents introduced in [14]. As
a result, the connection with [7] has become even stronger as we
now also have the principle Bχ→ Gχ in our semantics.
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